与光相关的参量有很多,比如相位、角动量、速度、波长、脉冲、偏振、能量分布、传播方向等。在按需改变这些参量的时候,我们发现它们具有一定的内在联系,比如通过对相位的改变,我们可以间接地对角动量进行改变、对脉冲进行改变、改变它的偏振方向、改变这一束光的能量分布、改变光的传播方向等等。所以相位在这里面是一个连接的纽带,它可以实现振幅调制无法实现的一些复杂调制。
用一个公式来表示光,这里可以调制的参量有两个,一个是振幅,一个是相位。

实现振幅调制(例如DMD,一部分类型的SLM等)的方法是通过遮挡一部分光,来使需要实现的能量分布的那一部分光漏过去。这样的话就有一个问题:被遮挡住这部分光相当于被浪费掉了,这部分光没有得到利用,说明振幅调制来实现的方法能量利用率低。
相位调制主要是通过相位调制使光强重新分布。忽略仪器本身所产生的噪声和误差,从原理上来讲,相位调制的能量利用率是100%。因此就可以看出通过相位对光进行调制,具有能量利用率高的优势。
另外,针对一些波长相关的应用,空间光调制器材料具有波长选择性,这也是DMD等调制器所没有的属性。从折射率和光程关系的公式来看,当波长下降的时候,折射率就会上升,这样的光程就增加,所以说相当于对不同的波长有不同的调制效果,这是它的一个原理。空间光调制器不同的波长对应着不同的LUT曲线,滨松每一台出厂的空间光调制器都有所有参数内波长的LUT数据,且优秀的硬件线性度使其无需标定。